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ABSTRACT

It is shown that the decision problem regarding the membership of a
given point in the capacity region of a packet radio network (PRN) is NP-
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origin-to-destination traffic rates, where feasibility is defined as the
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I. INTRODUCTION

A packet radio network (PRN) is a collection of geographically distributed

and possibly mobile users which share acommon radio channel for transmitting

and receiving messages to and from each other. Among the distinctive

features of a PRN are the burstiness of message traffic and the fact that

not all users are necessarily within the line of sight of one another. PRNs

present problems which are different in nature and more difficult than those

encountered in wire or satellite networks, [1-[4]. For a complete survey

of the issues concerning PRNs, we refer to Kahn et al., [1].

We are interested here mainly in the capacity region of a PRN. We seek

an algorithmic solution to the problem of determining whether a given point

belongs to the capacity region of a PRN and in fact show that this decision

problem is NP-complete. This result is obtained through a formulation which

allows one to identify the capacity region of a PRN with the set of achiev-

able origin-to-destination (o-d) traffic rates under perfect scheduling with

complete information about network topology and desired rates.

'1
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II. A PRN MODEL

As the first step toward the formulation of the problem we develop a

simple PRN model. A PRN is represented by a directed graph G = (N,A) such

that each user of the network is associated with a node in N and there

exists a link (a,b) in A iff node b is within the transmission range of

node a. G is a simple graph, i.e. G contains no self loops or multiple

links from one user to another.

When a node transmits a packet, it uses the entire bandwidth that is

available. In terms of the graph representation, this is to say that at

any time a node can send at most one packet over any of its outgoing links.

In fact, because of the broadcast nature of the network, when a node sends

a packet, this packet gets sent over all of its outgoing links at the same

time. As a result, a transmitted packet reaches all neighbors of the trans-

mitting node whether or not each neighbor is an intended receiver for that

packet. To make this distinction clear, we will say that a packet is trans-

mitted over link (a,b) only if node b is an intended receiver for this

packet transmitted by node a.

A transmitted packet may have several intended receivers if the net-

work protocols so desire. However, we shall restrict the data traffic with

respect to the number of (final) destinations by assuming that each packet

in the network has only one destination.

An (a,b)-transmission is said to be successful if the packet transmitted

over link (a,b) is received correctly by node b. In this model the only

cause of unsuccessful packet transmissions is interference between different

transmissions. Interference
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can be described as a binary relation on the set of links: (c,d)EA interferes

with (a,b)CA iff a # c and either c = b or else (c,b)eA. (Figure 1 a,b,c.)

We say that (c,d)CA conflicts with (a,b)cA iff either (c,d) interferes

with (a,b) or a = c and b 0 d. (Figure l.d.) The latter case corresponds

to the exclusion of simultaneous transmission of two or more different

packets by the same node. We define Cab to be the set of all links that

conflict with link (a,b); thus, Cab = f(c,d)cA: c a, (c,b)cA} U {(a,d)eA:

d # b} U {(b,d)A}. The significance of Cab is that a transmission over

(a,b) is successful iff no link in Cab attempts to transmit another packet

simultaneously.

We assume that the average desired traffic rates are fixed for each

o-d pair and denote the collection of all o-d rates by a column vector r
th

whose (x,y) row, rXY, is the desired rate for o-d pair (x,y)e NxN, x # y.

If there exist network protocols which satisfy the desired rates for

each o-d pair, then these o-d rates are called feasible. The capacity region

C(G) of a PRN G is the set of all feasible o-d rate vectors.

The problem of major interest here is to determine whether a given

o-d rate vector r belor, o the capacity region C(G) of a given PRN G.

The r-feasibility problem, as this problem is called, is difficult to

formulate in a general setting due to the vague notion of existence of

certain network protocols. For this reason, we initially consider a re-

stricted problem by assuming that 1) r X, = 0 unless (x,y)CA and 2) each

(x,y)-packet (i.e. a packet with origin x and destination y) is sent

directly over link (x,y) whenever (x,y)e A.

Under restrictions I and 2, the desired flow Tate f across link

xy
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(x,y) equals r for each (x,y)eA. We represent link flow rates by a
xy

colunm IAI-vector f, and use the term f-feasibility problem for the re-
stricted version of the r-feasibility problem.

The feasibility of f depends only on the timing and duration of

individual transmissions; i.e. it involves no routing decisions. This is

a scheduling problem where the set of rules determining the schedule is

usually called a multi-access scheme. In the next section, we shall analyze

the T-feasibility problem under TDMA schemes which have the desirable

property that if a given I is not feasible under TDMA then it is not feasible

under any other multi-access scheme.

As a final simplifying assumption, each link in the network will have

the same capacity. Link traffic rates will be normalized with respect to

this capacity so that < < T for any feasible 1.
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III. TDMA SCHEMES

Consider a variable slot length TDMA scheme where all nodes are

symchronized so that each transmission slot as perceived by different users

starts and ends simultaneously. With each slot associate a column L-vector

t where L is the number of links in the network and t. = 1 if link i trans-I

mits in that slot; t. = 0 otherwise, for i = 1,...,L.1

The transmission vectors that we consider here are conflict-free in

the sense that whenever ti = I for some link i, tj = 0 for all jEC.

The set of all links used by a transmission vector t, i.e. the set

{iEA:t. = 1}, is called the transmission set of t. A transmission set is1

called maximal if it is not contained in any other transmission set. A

maximal transmission vector is one whose transmission set is maximal. As

the PRN in Figure 2 shows, the number of maximal transmission vectors need

not be polynomially bounded in the number of links in the network. This

fact has important consequences in terms of the complexity of the feasibility

problems as will be explored later.

Let tl,t 2,.. ,tK be an ordering of all transmission vectors and let T

th -be the LxK matrix whose i column is t. (i = 1,...,K). The particular1

ordering of the transmission vectors as columns of T is not important in

this formulation, so T is treated as if it is unique and called the trans-

mission matrix.

With no loss of generality, we can consider variable slot length

TDMA schemes in which each transmission vector is used only once in a

frame. We let x. > 0 be the slot length of time in a frame for which

tw
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the frame length to be 1. Clearly, f is feasible under TDMA iff 1 > min

4. 4. 4.
I subject to Tx = f and >

The fact that the TDMA-f-feasibility problem can be formulated as a

linear program does not directly guarantee its solution in time polynomially

bounded in L because, as we have shown, the number of columns of T need not

be bounded polynomially in L even when only maximal transmission vectors

are counted.

Before giving the complexity results about the feasibility problems,

we need to define them in a more precise way.

A TDMA scheme is a three-tuple <G,T,x> where G is a PRN, T

is the transmission matrix of G and x is a column K-vector such that
). 4. 4. 741 x < I and x > 0.

FF (TDMA-f-feasibility problem)

Instance: <G,f> where G is a PRN and f is a column L-vector (one

4. 4 4

element for each link) with 0 < f < 1.

Question: Does there exist a TDMA scheme <G,T,x> such that Tx = f?

RF (r-feasibility problem)

Instance: <G,r> where G is a PRN and r is a non-negative column

vector with one element for each o-d pair in G.

Question: Is it true that rEC(G) where C(G) is the capacity region

of PRN G?

The main result is the following:
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[7 Theorem. FF and RF are NP-complete.

The proof is given in the appendix. The NP-completeness of FF is a

consequence of the fact that T may have exponentially many columns in L.

-. ~j- - - - - - -



IV. DISCUSSION OF RESULTS

The NP-completeness of FF and RF is a discouraging result because

PRNs need fast and reliable algorithms that can adapt to changes in data

traffic and network topology for their proper and efficient operation.

Further results on the complexity of the feasibility problems are

given in [5] where it is shown that even approximate solutions to FF and RF

cannot be obtained in polynomial time unless similar approximation algorithms

exist for the CLIQUE problem [6), which is an extensively studied proble

for which no polynomial time approximation algorithm is known.

The reduction proofs in the appendix make it clear that NP-complete

prevails also in caseswhere slots are constrained to be fixed in size

(i.e. xic{0,c} where c is constant) or larger than a fixed length in

duration (i.e. x. = 0 or x. > c for some constant c). The feasibility

problems remain NP-complete for the subclass of PRNs G(N,A) which satisfy

(a,b) A (b,a)cA for all (a,b)£ A.

Finally let us emphasize that the NP-completeness of RF is a general

result where the routing and multi-access schemes are not restricted in any

way. As can be seen in the appendix, the proof of this result is made pos-

sible by the fact that if a set of link flow rates I is feasible under any

multi-access scheme, than it is feasible under TDMA. To see this, suppose

f is feasible under some multi-access scheme, i.e. there exists a finite

time instant a such that the desired traffic rates are satisfied during

the time interval [O,a]. Let s(t) be the set of stations in transmission

at time tc[O,a]. For fixed t, if s(t) is a (conflict-free) transmission

set, then leave s(t) as it is; otherwise find a link i whose transmission

is destroyed by interference and delete it from s(t), i.e. let s(t) - s(t)\{i}.
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Do this until s(t) contains no conflicting links for all te[O,a]. Any

transmission that was successful remains successful at the end of this

process; therefore, the desired rates are still satisfied under the new

scheme which allows only non-conflicting sets of links to transmit at any

instant of time in the interval [O,a]. We now let xi be the average amount

of time transmission vector t. is used in the interval [O,c] to obtain a
i

TDMA scheme under which f is feasible.
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APPENDIX

Notation.

We use a shorthand notation for the cartesian product of an arbitrary

set V and an index set I which requires some explanation. For xeV, iEI,

we denote (x,i)e VxI b, xi and denote f(x,i) xeV} by V = {xi  xeV}.

thWe refer to V. as the i copy of V.i1
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1. NP-Completeness of FF

To prove that FF is NP-complete we first show that FFG NP and then

give a polynomial reduction from a related NP-complete problem.

Lemma 1. FFeNP

Proof. If I is feasible, then the linear program of section III has a

basic feasible solution, i.e., there exists L linearly independent trans-
-~~ 4. ~ 4. 4 . 44

mission vectors ti , t. ,. . .,t. such that B xB = f and VxB < 1, where
11 12 1Lth

B is the LxL basis matrix whose j column is t.. Therefore, a concise

certificate for a YES instance of FF is the basis matrix B. Note that

B can be computed in time polynomially bounded in L and xB can be com-

puted in time polynomially bounded in L and the size of the input <G,f>.

Consider now the following problem which will be shown to be NP-complete

and polynomially transformable to FF, thereby completing the proof that FF

is NP-complete.

Definition. The Transmission Set Cardinality Problem (TSC)

Instance: <G,D,k> where G = (N,A) is a PRN, D C A is a set of links,

and k is a positive integer not greater than IDI.

Question: Does there exist a transmission set S of G such that Isn D =k?

Lemma 2. TSC is NP-complete.

Proof. The reduction is from the CLIQUE problem: Given <H,k> where

H = (V,E) is an undirected graph and k is integer with 0 < k < lVi, does

H contain a clique of size k, i.e. a complete subgraph with k nodes?

CLIQUE is NP-complete [6] and the following algorithm transforms CLIQUE

to FF.
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Aleorithm Al.

Input: <H,k> (an instance of CLIQUE),

Output: <G,D,k> (an instance of FF).

G = (N,A) is related to H = (V,E) as follows.

N = V IUV2, A = {(al,ba2), aa) :aeV, beV, (a,b)JE}, D = :(al,a2  aeV}.

The algorithm is illustrated in Figure Al by an example.

If Q is a clique in H with IQI = k, then S = {(al,a 2) :aQ} is a

transmission set of G and ISnDj = k. Conversely, if S is a transmission

set of G with ISflDI = k, then Q = {aeV : (al,a2)e Sn D} is a clique of

size k in H. Therefore, <H,k> is a YES instance of CLIQUE iff <G,D,k> is

a YES instance of TSC. To complete the proof that TSC Is NP-complete we

note that a concise certificate for a YES instance of TSC is the set S. //

To show that TSC is reducible to FF we need a special construction

which is introduced next.

Definition. The mh power of G = (N,A) is Gm = (NM,A m) where Nm = U N.,
m m i=l

Am = U U A.i=l j=l

Aii {(ai.,b) : aieN., biNi., ai j bi} , = 1,.. ,

Aij = {(ai.,b) : aieNi , bjENj, a = b or (a,b)cA} , i 0 j,

i = l.,...,M, j = 1,...,m.

In Figure A2, G2 is shown as an example for a small graph G. Note

that (NA 11) and (N2,A22) are complete directed graphs. If we regard G

and G2 as PRNs, then it can be seen that whenever (x,y) and (u,v) are non-

conflicting links in G, (xly 1) and (u2 ,v2) are non-conlficting in G
2.
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Lemma 3. Let G = (N,A) be a PRN and Gm = (Nm,Am) be the mt h power of G.

For any two links (x,y)FA and (u,v) A, (x,y) does not conflict with (u,v)

in G iff Cx.,Yi) does not conflict with (u.,vj) in Ge for all i and j

such that i # j and i < ij < m.

Proof. Suppose (x,y) does not conflict with (uv). Let i and j be such

that i # j and 1 < i, j < m. By the hypothesis, x I v and (x,v)k A. Hence

(xi,vj)\Am and it follows that (xi,yi) does not conflict with (uj,v.).

Suppose (x,y) conflicts with (u,v). Then either x = v or (x,v)eA.

In each case (xi,v)cAij for all ij such that i # j and 1 < i, j < m;

hence (xi,yi) conflicts with (u.,v.).//
u'3j

k k
Lemma 4. Let <G,D,k> be an instance of TSC and D = U D.. The follow-

i=l 2

ing statements are equivalent:

(i) There exists a transmission set S of G such that ISfnDI = k.

(ii) There exists a transmission set Sk of Gk such that isk n Dk I = k.

Proof. (i) _ (ii): Let S D = ..' LI and let Zij be the

copy of j i in A.., i.e., if Xi = (a,b), then £ij = (aj,b ) for 1 < i < k

kand I < j < k. By Lemma 3, S = {1ii : i = l,...,k} is a transmission

set of Gk and iskr) DkI - k.

(ii) =5:-(i): Sk must contain exactly k links with one link from

each Di (i = 1 ...,k) because any two distinct links in Di conflict with

each other. Therefore S = {(a,b): (ai,bi)eSk for some i£{l,...,k}} has

k elements and is a transmission set of G. Since S C D, S n D also has k

elements.//

Finally, we consider the algorithm that transforms TSC to FF.
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Algorithm A2.

Input: <G,D,k> (an instance of TSC)

Output: <G',f'> (an instance of FF) where G' * (N',A') and G = (N,A)

are related as follows:

N' = N kJP L Q
kNk= U N.
iV 1

P ={plP2 .... Pk}

Q = {ql,q 2 .. qk}

A' = Ak v0y Z

k k k
A = U U A..

i=l j=l 13

Aii {(ai,bi) e Ni x N. : a 0 bi , i 1,.. .,k,

Aij. = {(ai,b.) C N. x N. : a = b or (a,b)cA} , i # j,

i = 1,...,k, j = 1,...,k,

Y a (P x Q) U (Q x P)

k k
z a j U z.

i=l j=l

j oj

Zi. 1 {p.} x N. L) N. x {pi} , j # i, j = l,...,k, 1 = i ..

(x,y)cDk

,(DI-1) 6 (x,y)C
0 ;0 otherwise,

1
where =

I + k(IDI-l)

k k

D U Di  C {(pi,q.) e PxQ i 1,....k,.
' i"!
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th k k
Note that the kth power of G, (N ,A ), is part of G'. The complete

structure of G' is illustrated in Figure A3 for the case of JDJ = 4 and

k = 3. The part of G' enclosed in the rectange is G3 . As seen in the

figure, (P,Q,Y) is a complete bipartite graph, i.e. (x,y)eY iff (xeP and

yeQ) or (xcQ and yeP). So, transmission sets of G' can have at most one

link in common with Y. Likewise, ((p.}, Nj, Zij) is a complete bipartite

graph for i 0 j and if a transmission set S' contains a link of the form

(pi,x) for some xeN', then S'/1Aij = 0. In fact, if (pi,x) eS', then S'

can have at most two elements, the other one being any link in A... The

reader should verify the above statements for himself before proceeding

with the following lemma.

Lemma 5. Let <G,D,k> be an input of algorithm A2 and <G',f'> be the

corresponding output. Then, <G,D,k> is a YES instance of TSC iff

<G',f'> is a YES instance of FF.

Proof. Suppose <G,Dk> is a YES instance of FF. By Lemma 4, there exists

a transmission set S' of G' such that SIC Dk and IS'1 = k. Thus, if we

use S' for a time units, then we can satisfy the desired flow rates of k

links in G, with one link from each set D. (i = l,.:.,k). There remains1

k-i links in each D. (i l,...,k) which are not included in S', so let1

Di\S' z f(aij,bij) : j = 1,...k-l} be a labelling of such links. Define

transmission sets Sij = {(aij,bij), (pi,qi)} for i = l,...,k, j = l....k-l.

Now, it can be verified easily that f' is feasible under a TDMA scheme

which uses the transmission sets S' and Sij (i = 1,...,k, j = 1,...,k-1)

each for 6 fraction of the time.

Suppose that f' is feasible under TDMA. Observe that any TDMA scheme

K ~~~M MW~--" -
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-.

under which f' is feasible must spend at least 1-6 fraction of the time in

satisfying the traffic assignments on links in C. In the remaining 6

fraction of the time at least k links in Dk must be allowed to transmit

simultaneously. This implies that there exists a transmission set S' of

G' with IS'C)Dk  = k. By Lena 4, there exists a transmission set S of G

with IS t)DI = k. This completes the proof of the lemma and the NP-com-

pleteness of FF.
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2. NP-Completeness of RF

Define the total traffic rate associated with node x of a PRN

G = (NA) as Rx = I r + I ry. R is the minimum fraction of
yEN x yN X

time node x is busy with receiving or transmitting messages which either
4.

originate at x or terminate at x. Clearly, if <G,r> is a YES instance

of RF, then we must have R < for all xeN. The following algorithm

makes use of this fact in reducing FF to RF.

Algorithm A3.

Input: <G,f> (an instance of FF)

Output: <G',r'> (an instance of RF) where G' = (N',A') and

G = (N,A) are related as follows:

N' = N\ JN1 UN 2

A' = A U B VJC , B = {(ala 2) : aEN}

C = {(a,a2, (a2,a), (a,a1), (al,a), (a2,a) : aeN}

rb = ; (a,b) CAab lab

r' = 1- (f f) (ala)EB
a1 a2  b ab + ba

r' = 0 ; (x,y)eC or (x,yNA'xy

The algorithm is illustrated in Figure A4.

Lemma 6. Let <G,f> and <G',r'> be the input and the output of Algorithm A3,

respectively. Then, <G,f> is a YES instance of FF iff <G,r> is a YES

instance of RF.
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Proof. Suppose <G,f> is a YES instance of FF. Since r' = 0 for allxy

(x,y) A', each packet can be transmitted directly from its origin to its

destination. Let this be our routing rule for <G',r'>. The resulting link

traffic rates satisfy f' = r' for all (x,y)eA'.xy xy

Let S' be a transmission set of G' containing no links of the form

(a,y) or (x,a) for some node aeNCN'. Then S'Uf(al,a 2)} is a transmission

set of G'. In this way the transmission sets of G used by the TDMA scheme

under which f is feasible can be augmented to yield a TDMA scheme for G'

under which f' is feasible.
Suppose <G',$'> is a YES instance of RF. Since R' + R' = 1 and

a a1

R' + R = 1 for all aeNCN', sending each packet directly from its origina a

to its destination is the only routing rule under which r' can be feasible.

In that case f = r for all (x,y)eA', implying that <G,f> is a YESxy x

instance of FF.

As the above proof suggests, if <G,r> is a YES instance of RF, then

there exists a stationary routing rule which determines the link traffic

rates and a TDMA scheme under which those rates are feasible. Therefore,

a concise certificate for a YES instance of RF is a set of routing variables

and a TDMA scheme satisfying the resulting link tralfic rates. This com-

pletes the proof that RF is NP-complete.
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bbd

bd

a aK

(a) (b)
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Fig. 1.

Situations in a PRN for which (c,d) conflicts with (a,b).
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Fig. 2.

A chain PRN with 3m+2 nodes contains at least 2x3 m

maximal transmission vectors.(Use induction on mn.)
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(A link without an arrow stands for two oppositely directed
links in this figure.)
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Fig. A2.
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